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Abstract. Amongst the wealth of available machine learning algorithms
for forecasting time series, linear regression has remained one of the most
important and widely used methods, due to its simplicity and inter-
pretability. A disadvantage, however, is that a linear regression model
may often have higher error than models that are produced by more so-
phisticated techniques. In this paper, we investigate the use of a grouping
based quadratic mean loss function for improving the performance of lin-
ear regression. In particular, we propose segmenting the input time series
into groups and simultaneously optimizing both the average loss of each
group and the variance of the loss between groups, over the entire series.
This aims to produce a linear model that has low overall error, is less
sensitive to distribution changes in the time series and is more robust to
outliers. We experimentally investigate the performance of our method
and find that it can build models which are different from those produced
by standard linear regression, whilst achieving significant reductions in
prediction errors.
Keywords: Time series prediction, samples grouping, quadratic mean

1 Introduction

The forecasting of time series is a well known and significant prediction task.
Many methods have been proposed in this area, ranging from the simple to the
very sophisticated. An important class of techniques includes methods which
learn a model based on optimizing a regularized risk function, such as linear
regression, Gaussian processes, neural networks and support vector machines.
Common drawbacks in the development of time series forecasting methods are
that many of them are applicable to only a specific type of time series, such as
medical data or stock market series; they may require certain conditions to be
fulfilled; or the improvement in performance is associated with a high increase
in complexity.

Linear regression is one of the most popular and widely used techniques for
time series prediction, since it is simple, intuitive and produces models with a
high degree of interpretability. Its performance is also often surprisingly good
compared to more complex methods. Nevertheless, reduction of prediction error



is a key concern and it remains attractive to consider techniques for improving
the behavior of standard linear regression, particularly for challenging circum-
stances. Such circumstances include non stationary and noisy time series, where
changes in the distribution of the series often occur over time.

Given these issues, this paper investigates a modification of linear regression
that takes a different perspective. Given a single univariate time series, instead
of optimizing the arithmetic mean of the loss over all training samples, we pro-
pose to optimize the quadratic mean of the loss over groups of training samples.
In particular, the univariate time series is segmented into a number of groups,
where each group contains one or more samples. A linear model is then learned
which simultaneously optimizes both the average loss of each group, as well as
the variance of the loss across groups. In other words, there are two concur-
rent optimization objectives. First, the model which is produced should have
low overall error rate - this is achieved by ensuring the average loss within each
group is small. Second, the groups should not vary too much with respect to the
error rate of each individual group - this ensures that there is no single group
which can significantly bias the characteristics of the output model. A primary
question is how should the univariate time series be segmented into groups ?
Our proposal is to segment the samples according to their distribution charac-
teristics. The intuition here is that we would like to learn a model which is not
biased towards any single distribution, since we do not know which distribution
the future behavior of the time series will most resemble.

We experimentally evaluate the performance of our technique using 20
real stock market datasets, 5 non-financial time series datasets and 5 synthetic
datasets. We find that our new method (which we call QMReg) can produce
linear models which are quite different from those of standard linear regression,
and often have significantly less error, with empirical reductions typically in the
range of 10%-30%. Our proposed method is an intuitive technique that ensures
more evenly distributed, less volatile error and sensitivity to changes in the dis-
tribution of the series.

2 Related work

Data mining researchers have a range of different types of classification and re-
gression algorithms at their disposal, and many of them have been applied to the
time series forecasting problem. Artificial Neural Networks(ANNs) [17], Support
Vector Machines [13] and Hidden Markov Models [20] [9] are other methods that
have been used with some success for financial time series forecasting, and clus-
tering has been used as an aid in the forecasting process as well.

The practical use of linear regression along with statistical knowledge is
embodied in the Autoregressive Integrated Moving Average (ARIMA) models,
which are descriptive, intuitive and often perform as well as advanced models.
Weighted linear regression and AutoRegressive Conditional Heteroskedasticity
(ARCH) models are more complex modifications of linear regression, which re-
quire some additional statistical expertise.



Robust regression is a more complex type of linear regression that assesses
the statistical properties of the data samples when learning a model [15], by han-
dling the outliers in the data, and assigning appropriate weights (or losses) to
reduce their influence [18]. Incorrect labelling of a sample as an outlier can be a
concern when using robust regression. Choosing the most appropriate approach
often requires statistical expertise by the user.

Since our method is based on grouping of instances as input to a loss mini-
mization function, a potentially related area of research is regularized multitask
learning [16], where the objective is to learn multiple classification tasks simul-
taneously, rather than independently. However, to our knowledge, research in
multitask learning has not used a quadratic mean loss function for the simulta-
neous optimization of loss across groups, as is done in this paper.

3 Distribution based quadratic mean convex optimization

We propose an algorithm that has two phases: (1) detection of distribution
change points to segment the time series into groups, and (2) training the re-
gression model using a quadratic mean to minimize both the individual loss of
each group and the variance of the loss across groups.

3.1 Time series segmentation - distribution change points detection

Distribution changes in time series variables are from a continuous process, sub-
ject to a set of external factors [1] [5]. The task of breaking up the samples of a
dataset into segments or groups based on distribution or similarities is not an un-
familiar challenge - simple clustering be effective in many cases. When it comes
to time series, as we may prefer to preserve the time element, distribution based
methods can also be used. Potential candidate tests for non-parametric change
point detection methods include the Wilcoxon rank sum method (WXN) and
the kernel change method (KCD) [14]. They can be applied for this task as they
are understandable and easy to introduce in the learning process. The Wilcoxon
rank sum method (WXN) assess whether two sets of data samples follow the
same distribution according to a statistical measure. It is an easy to implement
statistical test, and no a-priori knowledge is required (other than specification
of an appropriate p-value, commonly set to 0.05).

The WXN paradigm is as follows: for a fixed window of m points, [1, m],
we appoint after it another sliding window of the same length, [m+ 1, 2m]. We
move the second window and compare if the samples in both windows follow the
same distribution: if that is the case, we continue moving the second window,
until the distribution changes. The change point will be at the last sample of the
second window (point 2m + p), p>0, where we detect the group window v for
that group of samples; we move the first window just after that point [2m+p+1,
3m+ p], the second window comes after the first one [3m+ p+ 1, 4m+ p] and
we repeat the process for the rest of the dataset(Figure 1). The choice of the
window size m can vary, and we choose it to be the same size as the testing set.



Fig. 1. The Wilcoxon method with a fixed reference window and a sliding window

3.2 Quadratic mean based empirical loss function

The quadratic mean is defined as the square root of the average of the squares
of each element in a set. In the case of just two errors, ǫ1 and ǫ2, the values of
the quadratic mean QM and the arithmetic mean AM can be written as:

AM =
ǫ1 + ǫ2

2
, QM =

√

ǫ21 + ǫ22
2

=

√

AM2 + (
ǫ1 − ǫ2

2
)2 (1)

This shows that the quadratic mean is lower bounded by the arithmetic
mean, and this bound is reached when ǫ1=ǫ2. This form of optimization was
successfully tested for the scenario of imbalanced relational datasets [7] where
there are only two groups (positive and negative classes). The more advanced
form we use in our methods is specialised for the case of time series and permits
any number of groups.

Many machine learning methods address the learning process as finding
the minimum of the regularized risk function. For n training samples (xi, yi)
(i=1,..,n), where xi ∈ R

d is the feature vector of the i–th training sample, d is
the number of features, and yi ∈ {–1, 1} is the true label for the i–th training
sample (in the case of classification) and yi ∈ R in the case of regression, the
regularized risk function is:

w∗ = argminw λwTw+Remp(w) (2)

w is the weight vector which also includes the bias term b (which makes x

having and additional bias feature xd+1 ≡ 1), and λ is a positive parameter that
balances the two items in Equation 2, and Remp(w) = 1

n

∑n

i=1
l(xi, yi,w). The

loss function l(xi,yi,w) in Remp(w) measures the distance between a true label
yi and the predicted label from the forecasting done using w, and in the case of
Linear Regression it has the form of 1

2
(wTx-y)2.

We investigate the use of the quadratic mean as a risk function which balances
k values, instead of just two values. Each value represents the average loss for
a group of instances. The grouping of instances can be conducted in a range of
ways. A simple way is to segment the time series data into k groups by their



distribution, and we use the Wilcoxon method for that purpose. Each group
consists of consecutive data samples, and may vary in size depending on the
distribution of the underlying data. The effect of using the quadratic mean is to
produce a model which optimizes the average loss for each group, as well as the
variance of the average loss across the k groups.

The details behind the groups error optimization are as follows: with n sam-
ples, we denote the sizes of k groups as n1, n2,..,nk, where n1+n2+..+nk=n.
The empirical loss function of k group has the form of:

R
QM
emp,k(w) =

√

∑k

j=1
fj(w)2

k
(3)

where fj is the average error for group j consisting of nj consecutive samples
following the same distribution

fj(w) =

∑nj

i=1
l(xji, yji,w)

nj

(4)

where xji is the i-th sample of group j, and yji is the i-th output of group j.
After some manipulation, it can be rewritten as

R
QM
emp,k(w) =

√

µ2 + σ2 (5)

where µ is the mean error of the k groups 1

k

∑j=k

j=1
fj(w) and σ is the standard

deviation of the error across groups 1, . . . , k. This form clearly shows the overall
loss is the sum of two components, the average loss per group and the variance
across groups.

An ideal w minimizes the square root of the average of squares of errors per
group, while keeping the structural risk minimization as well, therefore resulting
in the final optimization function

w∗ = argmin
w

λwTw+RQM
emp(w) (6)

This form of calculation of the loss function is the form we use for the proposed
QMReg model, and this empirical loss function introduces robustness in the
algorithm, making it capable of minimizing the effect of outliers and the error
per distribution group. By using linear optimization methods, such as the bundle
method [6], we can calculate the subradients of the empirical loss and use them to
iteratively update the w vector in a direction that minimizes the quadratic mean
loss presented at Formula 3. The loss for a given sample is l(xi,yi,w)= 1

2
(wTx-

y)2, and it’s gradient will have the from of l′(xi,yi,w)=(wTx − y)2. Using this
in the calculation of the loss for a group in Equation 4, for the k groups of
samples, the subgradient function will have the form of Equation 7, and the
detailed pseudo-code of the entire learning process is presented as Algorithm 1.
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Algorithm 1 Bundle methods for solving the k-group quadratic mean mini-
mization problem

Input: convergence threshold ǫ; initial weight vector w0;

1: // Step 1: Change point detection
2: Initialize distribution windows Window1 (starting form the first sample) and

Window2 (which follows Window1)
3: Initialize iteration index k ← 1, initialize group window vk as empty
4: repeat

5: if samples in Window1 and Window2 have different distribution (according to
Wilcoxon rank sum test) - change point detected then

6: vk ← samples starting Window1 till end of Window2
7: Set Window1 after vk, Window2 follows Window1
8: k ← k+1
9: else

10: Move Window2 one sample further
11: end if

12: until all samples passed
13: // Step 2: Weight vector training:
14: Initialize iteration index t ← 0;
15: repeat

16: t ← t + 1;
17: Compute subgradient at ← ∂wRQ

emp,k(wt−1);

18: Compute bias bt ← RQ

emp,k(wt−1) – wT
t−1at;

19: Update the lower bound Rlb
t (w) = max1≤i≤t wT ai+bi;

20: Update wt ← argminw Jt(w) = λwTw+Rlb
t (w);

21: Compute current gap ǫt ← min0≤i≤t J(wi) – Jt(wt)
22: until ǫt ≤ ǫ or ǫt − ǫt−1 ≈ 0
23: Return wt

3.3 ”Every sample as a group” strategy

We compare our method of k groups with 2 extreme cases - when there is only
one group, and when every single instance is a group. It can be easily shown that
in the case of 1 group, the quadratic mean is equivalent to the standard linear
regression model. As a single instance can be represented as a group, we inves-
tigate this research direction as well. The resulting model is QMSampleGroup.
In this case the quadratic mean will try to minimize the variance of error across
the entire set of samples.

4 Experiments and results

Evaluation of the performance of the QMReg method was the main target of
the experimental work we conducted. To achieve this goal in the experiments
both real datasets and synthetic datasets were used. We tested 20 real stock
market time series datasets obtained from [11], in the time frame of 2000-2012.
We obtained daily stock market closing prices, one of the most often analysed



types of data [1]. The sizes of the datasets are between 200 and 600 samples,
divided on training set and test set.

A synthetic dataset was created, and 4 different versions of it were also
tested (Table 1). The initial set represented a visible deterministic trend, after
which 2 types of changes were introduced: increasing or decreasing the last sam-
ples, and adding different amounts of noise, in order to test the newly proposed
algorithm the ability to work with noisy data. We also performed testing on
5 non-financial time series, revealing opportunities for application of quadratic
mean based approach in the non-financial time series domain [12].

Table 1. Synthetic datasets description

Dataset Description

Simulated sample 1 Visible deterministic trend
Simulated sample 2 Deterministic trend, structural break(in same direction), caused

by increasing the last samples, noise(10% of original value)
Simulated sample 3 Deterministic trend, structural break(in opposite direction),

caused by decreasing the last samples, noise(10% of orig. value)
Simulated sample 4 Deterministic trend, structural break(in same direction), last

samples increased further, noise(25% of original value)
Simulated sample 5 Deterministic trend, structural break(in opposite direction),

last samples decreased further, noise(25% of original value)

4.1 Testing and results

Comparison between 6 methods was conducted in order to evaluate the ef-
fect of the QMReg methodology: Standard Least Squares Linear Regression
(LS, regressing to past 4 values), Distribution based Quadratic Mean Linear
Regression (QMReg, regressing to past 4 values), Quadratic Mean Linear Re-
gression with every sample as a group (QMSampleGroup, regressing to past 4
values), ARIMA(3,0,1), Robust Regression (Huber M -estimator) and SVM Re-
gression(SVM, α = 1, C=1, ǫ=0.001, ξ=ξ∗=0.001),). The Root Mean Square
Error(RMSE) was chosen as a performance metric, and we also calculate the
error reduction (ER) compared to the Least Squares models:

ER =
RMSE of LS− RMSE of QS methods

RMSE of LS
∗ 100.

From the results presented in Table 2, we can clearly see that the QMReg
method performed significantly better than the standard Least Squares linear
regression, much better than the ARIMA model, and very similar to the Robust
Regression and SVM, and was the method with the most stable convergence
towards the optimal weight vector as well, which was not always the case with
Least Squares. The performance of the QMReg method was mostly greater for
datasets where higher number of groups was detected. The SVM output arguable



less easy to interpret - support vector samples in the dataset are not as much
of use as simple coefficients for the features. With similar performance as SVM
regression, QMReg does show potential for use in cases when one is not familiar
with more complex forecasting methods, but can interpret the output of a linear
regression model. The objective of the QMReg to reduce the loss between groups
can be seen from Figure 2 which graphically shows how the errors per group are
minimized and made more even when QM grouping in performed.

Table 2. Root Mean Square Error (RMSE) and Error reduction (ER) of QMReg and
QMGroupSample methods compared to LS(in %).

Datasets

RMSE ER
LS QMReg QM ARIMA Robust SVM QMReg

Sample Regress. Regress.
Group

Amazon.com 0.725 0.625 0.628 1.85 0.6269 0.629 13.8

Apple 3.75 3.513 3.4 16.1 3.566 3.44 6.3

American Express 0.913 0.645 0.64 1.61 0.635 0.642 29.4

British Airways 0.129 0.1163 0.118 0.228 0.121 0.1182 9.6

Boeing 1.36 1.22 1.23 8.28 1.188 1.15 10.3

Coke 0.558 0.378 0.428 1.04 0.375 0.382 32.3

Colgate Plamolive 0.996 0.69 0.714 1.6 0.693 0.707 30.7

Ebay 0.66 0.615 0.622 2.17 0.616 0.614 6.8

Fedex 1.99 1.13 1.132 1.67 1.098 0.87 43.2

Ford 0.276 0.273 0.275 0.85 0.273 0.267 1.1

Hewlett-Packard 0.889 0.554 0.581 1.94 0.566 0.589 37.7

IBM 7.54 7.17 7.826 25.6 7.725 7.443 4.9

Intel 0.932 0.819 0.83 2.36 0.832 0.838 12.1

Island Pacific 1.18 1.12 1.085 1.11 1.113 1.1 5.1

Johnson & Johnson 0.439 0.382 0.413 1.1 0.392 0.399 13.0

McDonalds 0.756 0.71 0.716 2.5 0.719 0.704 6.1

Microsoft 0.439 0.256 0.383 0.91 0.258 0.27 41.7

Starbucks 0.619 0.618 0.614 1.86 0.621 0.624 0.2

Siemens 2.391 2.1 2.12 3.4 2.097 2.1 12.2

Walt Disney 0.75 0.565 0.54 3.2 0.542 0.552 24.7

Simulated sample 1 1.82 1.79 1.668 11.87 1.81 1.96 1.6

Simulated sample 2 5.6 1.838 1.949 12 1.781 1.843 67.2

Simulated sample 3 2.65 1.88 1.898 11.9 1.982 2.06 29.1

Simulated sample 4 2.52 2.14 2.81 12.8 2.31 2.17 15.1

Simulated sample 5 8.6 6.9 7.39 8.26 6.77 2.67 19.8

Chemical process 0.241 0.225 0.274 0.36 0.234 0.228 6.6

Temperature anomalies 14.38 13.52 13.57 16.3 13.53 13.57 6.0

Radioactivity 14.63 12.315 14.44 10.1 11.197 10.72 15.8

Airline passengers 49.78 45.81 46.6 118.8 48.398 56.3 8.0

Chocolate 1764 1382 1635 1970 1680 1686 21.7

Wilcoxon signed base 1.83E-06 1.3E-04 3.56E-05 9.78E-06 9.31E-05
rank test p-value base 0.00286 1.30E-05 0.2563 0.2845

base 1.43E-05 0.1682 0.2845



Fig. 2. Error between the groups of the loss, for Microsoft dataset.

The Robust regression is easy to interpret too, but a more statistical analysis
of the data is required - the non-parametric QMReg can be used as a black-box
method, and still deliver similar results. The difference with Robust regression
can be seen from Figure 3: the crossed points are outliers, and red points are
the test samples. We can notice that both methods are dealing successfully with
the outliers, but the subtle change in the distribution is more correctly detected
by the QMReg method, while robust regression is considering the end points as
possible outliers and still keeps the line towards the overall mean. It is this subtle
change detection that further leads to lower error for QMReg (RMSE=0.89) than
the Robust regression error (RMSE=2.09). We can see the QMReg is highly
competitive when compared to Robust regression, and based on Figure 3 we
believe it may have the potential to deal with non-stationary behaviour better.

4.2 Loss function analysis

By performing grouping among the training set, the QM methods tend to mini-
mize not only the overall training error, but the error per group. This results in a
lower variance in the loss, as it can be seen from Table 3: the standard deviation
in QMReg method was at its best up to 58% less than the one of the LS method.
The grouping performed in the case of QMReg was also conducted for LS. The
loss per group was calculated, and standard deviation among the loss per group
showed that the QM method indeed minimizes the loss amongst the groups:
Table 3 shows the standard deviation of the error per group is statistically lower
in the case of QMReg when compared to LS.

5 Conclusion and future work

Time series forecasting is a classic prediction problem, for which linear regression
is one of the best known and most widely used methods. In this paper, we have
proposed a technique that enhances standard linear regression, by employing an
optimization objective which explicitly recognises different groups of samples.
Each group corresponds to a segment of the time series whose samples have



Fig. 3. Robust regression and QMReg comparison - the pluses are the outliers, and the
black dots are future samples to be predicted. Robust regression considers the points at
the very end as possible outliers, while QMReg detects the subtle change of direction
and adjusts the line accordingly

similar distribution characteristics. Our objective simultaneously minimizes the
expected loss of each group, as well as the variance of the loss across the groups.
By doing so, we ensure a model that produces more stable, less volatile predic-
tions, and capable of additionally minimizing the effect of outliers or noisy data.

The experimental study highlighted the promise of our approach, showing
that it could produce linear models different to that of standard linear regression
and which also achieved consistent reductions in error in the range 10% to 30%
on average, up to 40% error reduction in some cases. As the performance of our
proposed method is comparable to more advanced forecasting methods(SVM re-
gression and Robust Regression), our model has an advantage that it improves
the performance of linear regression while avoiding unnecessary complexity and
unwanted parameters, so it can be used by more general practitioners on diverse
types of time series.

For future work, we would like to investigate the use of weighted groupings,
for cases where the quality of a group with respect to the prediction task can be
estimated, and introduce the time element in the learning process even further.



Table 3. Loss function mean and standard deviation for entire training set, and stan-
dard deviation of loss across groups per training set

Loss function Standard deviation for
Dataset LS QMReg loss across groups

mean st. dev. mean st. dev. LS QMReg

Amazon.com 0.7074 1.1087 0.5081 0.8229 0.4888 0.3139
Apple 15.1928 27.2601 13.9676 26.0380 8.8954 8.3127
American Express 1.1356 2.2984 0.8372 1.5941 0.8179 0.5714
British Airways 0.0303 0.0483 0.0203 0.0398 0.0199 0.0156
Boeing 2.2065 3.5453 0.9353 1.5959 1.1735 0.4683
Coke 0.4660 1.1622 0.2504 0.8432 0.5104 0.2234
Colgate Plamolive 1.3929 2.8065 0.7759 2.1025 1.2410 0.5965
Ebay 0.2531 0.4295 0.2224 0.4208 0.1550 0.1060
Fedex 6.4903 9.3358 2.5329 3.9214 3.9518 1.3231
Ford 0.0680 0.1184 0.0681 0.1191 0.0485 0.0481
Hewlett-Packard 0.9649 2.2101 0.5336 1.2165 0.9802 0.4411
IBM 85.553 133.895 60.431 123.244 52.7541 56.8021
Intel 1.2986 2.4139 1.1098 2.0457 0.6658 0.4592
Island Pacific 0.9762 1.3706 0.5165 0.8315 0.4787 0.1660
Johnson & Johnson 0.2526 0.4612 0.2372 0.4137 0.1572 0.1343
McDonalds 0.3491 0.7640 0.2742 0.5731 0.2595 0.1650
Microsoft 0.2600 0.6304 0.1980 0.5074 0.1563 0.0867
Starbucks 0.1654 0.4354 0.1672 0.4239 0.1295 0.1232
Siemens 4.6880 6.1569 4.0694 5.4571 1.7561 1.2753
Walt Disney 0.4286 0.7747 0.2374 0.4255 0.3840 0.1434
Simulated sample 1 3.5835 3.2914 2.9072 2.7637 0.8706 0.6042
Simulated sample 2 14.5109 26.8793 4.6307 15.8900 13.8375 5.0620
Simulated sample 3 9.3680 18.8459 3.7615 8.3814 5.8793 1.6188
Simulated sample 4 40.6497 86.3151 31.5504 80.3505 38.3393 29.8716
Simulated sample 5 93.7317 133.0539 53.3164 104.7921 51.9541 29.3767
Chemical process 0.0680 0.1442 0.0756 0.1653 0.0339 0.0277
Temperature anomalies 232.47 368.44 206.57 318.60 16.7000 52.8821
Radioactivity 175.04 230.35 180.35 244.17 46.7919 31.9748
Airline passengers 809.82 1418.44 796.04 1130.33 490.8909 426.3732
Chocolate 1499216 2158796 952022 1486350 622544.00 467145.00

Wilcoxon signed rank base 2.72E-05 3.90E-05 base 0.0001816
test p-value
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